Abstract

Periodic temporal modulation of Hamiltonians can induce geometrical and topological phenomena in the dynamics of quantum states. Using the interference between two lasers, we demonstrate an off-resonant optical lattice for a polariton condensate with controllable potential depths and nearest-neighbour coupling strength. Temporal modulation is introduced via a gigahertz frequency detuning between pump lasers, creating a polariton ‘conveyor belt’. The breaking of time-reversal symmetry causes band structures to become non-reciprocal and acquire a universal tilt given by Planck’s constant and the frequency of modulation (hΔf). The non-reciprocal tilting is connected to the non-trivial topology of the Floquet–Bloch bands, which have a finite Chern number. Detailed characterization of the lattice potential depth and its dynamics highlights the role of high-energy carriers in the formation of optical potential landscapes for polaritons, demonstrating the possibility of modulation faster than the polariton lifetime and opening a pathway towards Floquet engineering in polariton condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.