Abstract
A variety [Formula: see text] over a field [Formula: see text] is said to have the Hilbert Property if [Formula: see text] is not thin. We shall exhibit some examples of varieties, for which the Hilbert Property is a new result. We give a sufficient condition for descending the Hilbert Property to the quotient of a variety by the action of a finite group. Applying this result to linear actions of groups, we exhibit some examples of non-rational unirational varieties with the Hilbert Property, providing positive instances of a conjecture posed by Colliot–Thélèene and Sansuc. We also give a sufficient condition for a surface with two elliptic fibrations to have the Hilbert Property, and use it to prove that a certain class of K3 surfaces have the Hilbert Property, generalizing a result of Corvaja and Zannier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.