Abstract
New protein lysine methyltransferase (PKMT) assays are needed to facilitate screening for improved PKMT inhibitors, because PKMTs are mutated or overexpressed in several cancers. In cells, methylated lysine residues are recognized by reading domains such as the chromodomain of HP1β, which bind to target proteins in a lysine-methylation-specific manner. Herein we describe a sensitive, robust, and non-radioactive high-throughput PKMT assay that employs the HP1β chromodomain to detect the methylation of peptide substrates by the human SUV39H1 and SUV39H2 PKMTs. The assay has a very good dynamic range and high signal-to-noise ratio. It can be used to screen for PKMT inhibitors, as illustrated by analyzing the inhibition of SUV39H1 by chaetocin. The IC50 value of this inhibition was found to be 480 nM, which is close to its published value. Our data indicate that natural reading domains can be used as alternates to methyl-specific antibodies in PKMT assays. Reading domains can be produced recombinantly in E. coli at low cost and consistent quality, and they are accessible to protein design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.