Abstract

AbstractThis paper reports a study of the non-radiative processes competing with the excitation of the erbium ion in layers implanted with high concentrations of erbium and oxygen. These processes reduce the luminescence efficiency of the Si:Er system and dramatically increase the threshold current density calculated to be necessary for an ultimate goal, the Si/Ge:Er LASER. Using cross sectional TEM, photoluminescence as a function of temperature and DLTS, it is demonstrated that a two stage anneal procedure which avoids the formation of extended defects and removes specific deep states is necessary to obtain efficient Er3+ excitation at high erbium concentrations. Comparisons are made with damage resulting from germanium implantation into silicon. The role of multiple stage anneals is discussed in relation to the removal of Shockley-Hall-Read recombination centres

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.