Abstract

Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multi-group neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, <Ma^2>, reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for <Ma^2>~0.3, corresponding to a reduction of the critical neutrino luminosity by ~25% compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux onto the shock: Differential infall efficiently converts velocity perturbations in the progenitor into density perturbations (Delta rho/rho) at the shock of the order of the initial convective Mach number Ma. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (l=2,l=1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of order Ma^2 and therefore play a subdominant role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call