Abstract

The behavior of a slight chiral bias in favor of l-amino acids over d-amino acids was studied in an evolutionary mathematical model generating mixed chiral peptide hexamers. The simulations aimed to reproduce a very generalized prebiotic scenario involving a specified couple of amino acid enantiomers and a possible asymmetric amplification through autocatalytic peptide self-replication while forming small multimers of a defined length. Our simplified model allowed the observation of a small ascending but not conclusive tendency in the l-amino acid over the d-amino acid profile for the resulting mixed chiral hexamers in computer simulations of 100 peptide generations. This simulation was carried out by changing the chiral bias from 1% to 3%, in three stages of 15, 50 and 100 generations to observe any alteration that could mean a drastic change in behavior. So far, our simulations lead to the assumption that under the exposure of very slight non-racemic conditions, a significant bias between l- and d-amino acids, as present in our biosphere, was unlikely generated under prebiotic conditions if autocatalytic peptide self-replication was the main or the only driving force of chiral auto-amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.