Abstract

We assembled a database consisting of 5,404 PKIKP/PKiKP observations from 555 events, where PKIKP is the phase sampling the inner core (IC) and PKiKP is the phase reflected at the inner core boundary (ICB). Around 138° distances, their differential arrival times and amplitude ratio are mostly sensitive to the seismic velocity and attenuation structure in the uppermost IC (UIC), respectively. Our observations do not support a large-scale anisotropy in the UIC, but do not exclude its presence in some restricted areas. A robust inversion for the isotropic P-wave velocity perturbations shows a higher velocity cap with a radius of ~60°, approximately centered beneath the Northern Sumatra, with a local low velocity zone beneath the central Indian Ocean. The rest of the UIC, including the Northern part of Eurasia and of the Atlantic Ocean, exhibits mostly lower velocity. Amplitude ratio values of PKIKIP/PKiKP (observed vs. computed) from 548 high signal-to-noise (>5) recordings show a large variance, suggesting only a faint correlation between higher velocity and lower attenuation in the UIC. Our results provide better constraints to the models invoking a heat transfer in the UIC, with a complex temperature pattern near ICB.

Highlights

  • We assembled a database consisting of 5,404 PKIKP/PKiKP observations from 555 events, where PKIKP is the phase sampling the inner core (IC) and PKiKP is the phase reflected at the inner core boundary (ICB)

  • The same situation is seen for the earthquakes in South Pacific (e.g. Papua New Guinea) observed at stations in Spain/Portugal, for most of the Vanuatu events observed at stations in Israel or Turkey, or for the Solomon Islands earthquakes observed in Germany and France

  • For a PKIKP recorded at 138 degrees, the last approach may introduce its own errors in the location of the velocity perturbation as large as 16 degrees in the horizontal direction

Read more

Summary

Introduction

We assembled a database consisting of 5,404 PKIKP/PKiKP observations from 555 events, where PKIKP is the phase sampling the inner core (IC) and PKiKP is the phase reflected at the inner core boundary (ICB). In the case of the 2017, June, 24th South Peru event, 22 observations at the same array show −0.54 +/− 0.02 seconds for the differential time, but 0.76 +/− 0.05 for the NL amplitude ratio.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.