Abstract

We show that a gas-to-liquid phase transition at zero temperature may occur in a coherent gas of bosons in the presence of competing nonlinear effects. This situation can take place in atomic systems like Bose–Einstein condensates in alkali gases with two-body and three-body interactions of opposite signs, as well as in laser beams which propagate through optical media with Kerr (focusing) and higher order (defocusing) nonlinear responses. The liquefaction process takes place in the absence of any quantum effect and can be formulated in the framework of a mean field theory, in terms of the minimization of a thermodynamic potential. We study from a thermodynamic point of view all the stationary solutions of the cubic–quintic nonlinear Schrödinger equation which describes our system. We show that solitonic localized solutions connect the gaseous and liquid phases. Furthermore, we also perform a numerical simulation in the presence of linear gain and three-body recombination where a rich dynamics, including the emergence of self-organization behavior, is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.