Abstract

Experimental observations are reported for the non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy performed under the stress-controlled cyclic tension–torsion loading conditions and at room temperature. The effect of axial mean stress on the evolutions of transformation ratchetting strain and dissipation energy per cycle during the cyclic tests is discussed firstly; and then the dependence of multiaxial transformation ratchetting on the different non-proportionally loading paths (e.g., linear, square, hourglass-typed, butterfly-typed, rhombic and octagonal paths) is investigated. The results show that the multiaxial transformation ratchetting occurs mainly in the axial direction because only the non-zero axial mean stress is used and the mean shear stress is set to be zero in the all prescribed multiaxial loading paths; and the axial peak and valley strains increase with the increasing axial mean stress and also depend significantly on the shapes of loading paths. Comparison with the corresponding uniaxial ones illustrates that the multiaxial stress states are more helpful to promote the development of transformation ratchetting, especially for the non-proportional ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call