Abstract
Many models and techniques have been proposed by researchers to improve forecasting accuracy using fuzzy time series. However, very few studies have tackled problems that involve inverse fuzzy function into fuzzy time series forecasting. In this paper, we modify inverse fuzzy function by considering new factor value in establishing the forecasting model without any probabilistic approaches. The proposed model was evaluated by comparing its performance with inverse and noninverse fuzzy time series models in forecasting the yearly enrollment data of several universities, such as Alabama University, Universiti Teknologi Malaysia (UTM), and QiongZhou University; the yearly car accidents in Belgium; and the monthly Turkish spot gold price. The results suggest that the proposed model has potential to improve the forecasting accuracy compared to the existing inverse and non-inverse fuzzy time series models. This paper contributes to providing the better future forecast values using the systematic rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.