Abstract
In this study the kinetics of conversion of a low-soluble substrate by an immobilized enzyme was investigated with respect to the diffusion limitation within porous and non-porous carriers. Non-porous micro-magnetic beads in comparison to conventional porous supports like Eupergit and Sepharose were tested. Due to their small diameters and their magnetic properties, micro-magnetic beads are especially applicable in diffusion rate-controlled processes in biological suspensions. The enzymatic reaction studied was the conversion of emulsified dirhamnolipid by immobilized Naringinase from Penicillium decumbens to monorhamnolipid and l-rhamnose. Taking into account mass transfer phenomena, the variation of the reaction effectiveness factor with increasing enzyme loading was estimated and compared with experimental efficiencies utilizing different enzyme loaded immobilized preparations. For comparison, carrier activities were also determined with the model substrate p-nitro-phenyl-rhamnoside. Intrinsic enzyme activities were thereby evaluated for porous supports. Highest specific activities were obtained with the micro-magnetic beads. These non-porous micro-beads demonstrated to be the most suitable carrier for bioconversion of a low-soluble substrate like rhamnolipids, where mass diffusional resistances in the three-phase reaction process are completely overcome. However, the smaller particle surface available limited the specific activity obtained at high protein loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.