Abstract

In this paper, we propose a new numerical scheme for two-dimensional fractional sub-diffusion problems using non-polynomial spline. The solvability, stability and convergence of the proposed method are established using the well known discrete energy methodology. It is shown that the spatial convergence order is at least 4.5 which improves the best result achieved to date. We also carry out simulation to demonstrate the accuracy and efficiency of the proposed scheme and to compare with other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.