Abstract

CXCL4 is mainly produced by activated platelets, and certain somatic cells and cancer cells also express CXCL4. However, the physiological function of non-platelet-derived CXCL4 is unclear. Previously, we reported that CXCL4 produced by cancer cells accelerated tumor growth by suppressing the antitumor activities of cytotoxic T lymphocytes (CTLs). To elucidate the mechanism of CXCL4 in tumor immunity, we compared the CTLs and regulatory T cells (Tregs) from CXCL4−/−, CXCR3−/− and C57BL/6 mice overexpressing CXCL4 via intramuscular electroporation. CXCL4 accelerated tumor growth in CXCL4−/− and C57BL/6 mice but not in CXCR3−/− mice. Furthermore, CXCL4 decreased CTLs proliferation and IFN-γ production and enhanced CTLs apoptosis and programmed death 1 (PD-1) expression. Conversely, CXCL4 promoted Tregs proliferation and TGF-β production and downregulated PD-1 expression in Tregs. Notably, these effects of CXCL4 were both observed in the splenic and tumor-infiltrating CTLs and Tregs from wild-type but not CXCR3−/− mice. Thus, we revealed a negative immune regulatory function for non-platelet-derived CXCL4 through CXCR3 that cancer cells could hijack to evade the host immune system, suggesting that the CXCL4/CXCR3 axis may serve as a novel target for colorectal cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.