Abstract

Molecular magnets have received significant attention because of their potential applications in quantum information and quantum computing. A delicate balance of electron correlation, spin-orbit coupling (SOC), ligand field splitting, and other effects produces a persistent magnetic moment within each molecular magnet unit. The discovery and design of molecular magnets with improved functionalities would be greatly aided by accurate computations. However, the competition among the different effects poses a challenge for theoretical treatments. Electron correlation plays a central role since d- or f-element ions, which provide the magnetic states in molecular magnets, often require explicit many-body treatments. SOC, which expands the dimensionality of the Hilbert space, can also lead to non-perturbative effects in the presence of strong interaction. Furthermore, molecular magnets are large, with tens of atoms in even the smallest systems. We show how an abinitio treatment of molecular magnets can be achieved with auxiliary-field quantum Monte Carlo, in which electron correlation, SOC, and material specificity are included accurately and on an equal footing. The approach is demonstrated by an application to compute the zero-field splitting of a locally linear Co2+ complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.