Abstract

AbstractA caustic of a billiard table is a curve such that any billiard trajectory, once tangent to the curve, stays tangent after every reflection at the boundary. When the billiard table is an ellipse, any non-singular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics—those whose tangent trajectories are closed polygons—are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.