Abstract

Input-driven dynamical systems have attracted attention because their dynamics can be used as resources for brain-inspired computing. The recent achievement of human-voice recognition by spintronic oscillator also utilizes an input-driven magnetization dynamics. Here, we investigate an excitation of input-driven chaos in magnetization dynamics by voltage controlled magnetic anisotropy effect. The study focuses on the parametric magnetization oscillation induced by a microwave voltage and investigates the effect of random-pulse input on the oscillation behavior. Solving the Landau–Lifshitz–Gilbert equation, temporal dynamics of the magnetization and its statistical character are evaluated. In a weak perturbation limit, the temporal dynamics of the magnetization are mainly determined by the input signal, which is classified as input-driven synchronization. In a large perturbation limit, on the other hand, chaotic dynamics are observed, where the dynamical response is sensitive to the initial state. The existence of chaos is also identified by the evaluation of the Lyapunov exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.