Abstract

We present a real-space, non-periodic, finite-element formulation for Kohn–Sham density functional theory (KS-DFT). We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, we develop a parallel finite-element implementation of this formulation capable of performing both all-electron and pseudopotential calculations. We assess the accuracy of the formulation through selected test cases and demonstrate good agreement with the literature. We also evaluate the numerical performance of the implementation with regard to its scalability and convergence rates. We view this work as a step towards developing a method that can accurately study defects like vacancies, dislocations and crack tips using density functional theory (DFT) at reasonable computational cost by retaining electronic resolution where it is necessary and seamlessly coarse-graining far away.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call