Abstract

The optical transfer function is crucial for imaging system design and characterization. However, practical optical systems often deviate from linear spatial invariance due to aberrations and field-of-view considerations, posing challenges for optical transfer function characterization and aberration compensation in non-paraxial region imaging. Partitioning the field-of-view into isoplanatic regions and measuring the optical transfer function for each region is a potential solution, but practical implementation is hindered by the lack of field-of-view information. This Letter introduces a compensation method for the phase modulation function based on spatial frequency domain division, specifically tailored for scenarios where high imaging quality is not essential. The proposed method addresses the challenge by filling the phase transfer function in an annular form corresponding to aberrations in different isoplanatic regions, offers a valuable solution for adaptive aberration compensation in non-paraxial region imaging, and presents a practical illustration of its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.