Abstract
Classifying transients based on multi band light curves is a challenging but crucial problem in the era of GAIA and LSST since the sheer volume of transients will make spectroscopic classification unfeasible. Here we present a nonparametric classifier that uses the transient's light curve measurements to predict its class given training data. It implements two novel components: the first is the use of the BAGIDIS wavelet methodology - a characterization of functional data using hierarchical wavelet coefficients. The second novelty is the introduction of a ranked probability classifier on the wavelet coefficients that handles both the heteroscedasticity of the data in addition to the potential non-representativity of the training set. The ranked classifier is simple and quick to implement while a major advantage of the BAGIDIS wavelets is that they are translation invariant, hence they do not need the light curves to be aligned to extract features. Further, BAGIDIS is nonparametric so it can be used for blind searches for new objects. We demonstrate the effectiveness of our ranked wavelet classifier against the well-tested Supernova Photometric Classification Challenge dataset in which the challenge is to correctly classify light curves as Type Ia or non-Ia supernovae. We train our ranked probability classifier on the spectroscopically-confirmed subsample (which is not representative) and show that it gives good results for all supernova with observed light curve timespans greater than 100 days (roughly 55% of the dataset). For such data, we obtain a Ia efficiency of 80.5% and a purity of 82.4% yielding a highly competitive score of 0.49 whilst implementing a truly "model-blind" approach to supernova classification. Consequently this approach may be particularly suitable for the classification of astronomical transients in the era of large synoptic sky surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.