Abstract
This paper proposes a method to solve ordinal regression problems, namely the non-parallel hyperplanes ordinal regression machine (NPHORM). The goal of this approach is to find K different hyperplanes for the K classes with ordinal information, so that each class is as close as possible to the corresponding hyperplane while as far as possible from the adjacent to the left and right classes. The more flexible separate hyperplanes are preferred using the order information of the data. As a result, this approach only needs to solve K quadratic programming problems independently. Our approach NPHORM is validated on 2 artificial datasets, 16 discretized regression datasets and 17 real ordinal regression datasets and compared with 8 outstanding SVM-based ordinal regression approaches. The results show that our approach NPHORM is comparable with the other SVM-based approaches, especially in real ordinal regression datasets. In addition, our NPHORM is also carried out on the historical color image dataset to compare the performance of deep learning method. Experimental results demonstrate that the performance of our NPHORM outperforms the deep learning methods on MAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.