Abstract

Human epidermoid KB cell lines resistant to high levels of adriamycin, C-A90, C-A120, C-A500, and C-A1000, were isolated in selection medium containing increasing concentrations of adriamycin, 1 microgram/ml of cepharanthine, a multidrug-resistance (MDR) reversing agent, and 100 nM of mezerein, a protein kinase C activating agent. One of the adriamycin-resistant KB cell lines, C-A500, was cross-resistant to drugs that typify the classical multidrug resistance phenotype, such as vincristine, actinomycin D, VP-16, and colchicine. The accumulation of adriamycin and vincristine was decreased in C-A500 cells and the efflux of adriamycin from C-A500 was enhanced compared with parental KB-3-1 cells. These adriamycin-resistant KB cells did not contain detectable levels of P-glycoprotein or overexpress MDR1. Multidrug-resistance-associated protein (MRP) and MRP mRNA were expressed in the adriamycin-resistant KB cells, C-A120, C-A500, and C-A1000, but not in parental KB-3-1 and revertant C-AR cells. The MRP gene was amplified in all the MDR cells that overexpressed MRP mRNA. DNA topoisomerase II levels were markedly decreased in C-A500 and C-A1000 cells but only slightly decreased in C-A120 cells. These results indicate that MRP overexpressed in the resistant cells may be responsible for the reduced accumulation of adriamycin and vincristine and that both the increased expression of MRP and decreased levels of topoisomerase II underlie the drug resistance in C-A120, C-A500, and C-A1000 cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.