Abstract
Precipitates in an austenitic stainless steel fabricated via any Additive Manufacturing (AM), or 3D printing, technique have been widely reported to be only Mn-Si-rich oxides. However, via Transmission Electron Microscopy (TEM) studies on a 316L stainless steel, we show that non-oxide precipitates (intermetallics, sulfides, phosphides and carbides) can also form when the steel is fabricated via Laser Metal Deposition (LMD)—a directed energy deposition-type AM technique. An investigation into their origin is conducted with support from precipitation kinetics and finite element heat transfer simulations. It reveals that non-oxide precipitates form during solidification/cooling at temperatures ≥ 0.75Tm (melting point) and temperature rates ≤ 105 K/s, which is the upper end of the maximum rates encountered during LMD but lower than those encountered during Selective Laser Melting (SLM)—a powder-bed type AM technique. Consequently, non-oxide precipitates should form during LMD, as reported in this work, but not during SLM, in consistency with existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.