Abstract
In this paper, we propose SUbsequence Matching framework with cell MERgence (SUMMER) for online subsequence matching between histogram-based stream synopsis structures under the dynamic time warping distance. Given a query synopsis pattern, SUMMER continuously identifies all the matching subsequences for a stream as the bins are generated. To effectively reduce the computation time, we design a Weighted Dynamic Time Warping (WDTW) algorithm, which computes the warping distance directly between two histogram-based synopses. Furthermore, a Stack-based Overlapping Filter Algorithm (SOFA) is provided to remove the overlapping subsequences to avoid the redundant information. Finally, we design an optional refinement module to relax the subsequence range limit and improve the matching accuracy. Our experiments on real datasets show that the proposed method significantly speeds up the pattern matching without compromising the accuracy required when compared with other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.