Abstract

We investigate non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) in the cellular multiple-input multiple-output (MIMO) downlink for systems beyond LTE-Advanced. Taking into account the overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal multiuser multiplexing and the applicability of the SIC receiver in the MIMO downlink, we propose intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam SIC at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. Regarding the transmitter beamforming (precoding), in general, any kind of beamforming matrix determination criteria can be applied to the proposed NOMA method. In the paper, we assume open loop-type random beamforming, which is very efficient in terms of the amount of feedback information from the user terminal. Furthermore, we employ a weighted proportional fair (PF)-based resource (beam of each frequency block and power) allocation for the proposed method. Simulation results show that the proposed NOMA method using the intra-beam superposition coding and SIC simultaneously achieves better sum and cell-edge user throughput compared to orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.