Abstract

In this paper, non-orthogonal multiple access (NOMA) networks assisted by multiple intelligent reflecting surfaces (IRSs) with discrete phase shifts are investigated, in which each user device (UD) is served by an IRS to improve the quality of the received signal. Two scenarios are considered according to whether there is a direct link between the base station (BS) and each UD, and the outage performance is analyzed for each of them. Specifically, the asymptotic expressions for the upper and lower bounds of the outage probability in the high signal-to-noise ratio (SNR) regime are derived. Following that, the diversity order is obtained. It is shown that the use of discrete phase shifts does not degrade diversity order. More importantly, simulation results reveal that a 3-bit resolution for discrete phase shifts is sufficient to achieve near-optimal outage performance. Simulation results also imply the superiority of IRSs over full-duplex decode-and-forward relays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.