Abstract

SummaryVehicular edge computing (VEC) is envisioned as a promising approach to process explosive vehicle tasks, where vehicles can choose to upload tasks to nearby edge nodes for processing. However, since the communication between vehicles and edge nodes is via wireless network, which means the channel condition is complex. Moreover, in reality, the arrival time of each vehicle task is stochastic, so efficient communication methods should be designed for VEC. As one of the key communication technologies in 5G, non‐orthogonal multiple access (NOMA) can effectively increase the number of simultaneous transmission tasks and enhance transmission performance. In this article, we design a NOMA‐based task allocation scheme to improve the VEC system. We first establish the mathematical model and divide the allocation of tasks into two processes: the transmission process and the computation process. In the transmission process, we adopt the NOMA technique to upload the tasks in batches. In the computation process, we use a high response‐ratio strategy to determine the computation order. Then we define the optimization objective as maximizing task completion rate and minimizing task energy consumption, which is an integer nonlinear problem with lots of integer variables and cannot be solved directly. Through further analysis, we design a heuristics algorithm which we name as the AECO (average energy consumption optimization) algorithm. By using the AECO, we obtain the optimal allocation strategy by constantly adjusting the optimal variables. Simulation results demonstrate that our algorithm has a significant number of advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.