Abstract

The mechanism of an extraordinary increase in conductivity at larger applied voltage than the critical voltage generally observed in the one-dimensional electronic systems such as tetrathiafulvalenium–tetracyanoquinodimethanide (TTF–TCNQ) is quantitatively investigated. The tunneling effects of the nondissipative diamagnetic currents between the two neighboring localized TTF unit cells and the current–voltage characteristics at low temperature process (0 K < T < 14 K) are investigated. The transition probability ( P TC) of electrons between two neighboring unit cells is estimated to be in the order of 10 −3–10 −4. The estimated density of states near the Fermi level in the Peierls distorted structures ( N PD( ɛ F)) on the basis of the experimental results of the current–voltage characteristics is always larger than that ( N NM( ɛ F)) in the normal metallic states in TTF–TCNQ molecular crystals. This result can be rationalized from the fact that the density of states near the Fermi level in the Peierls distorted states is enhanced as a result of the congestion of the energy levels. That is, the N PD( ɛ F) values estimated on the basis of the tunneling effect theory suggested in this paper are well rationalized. The tunneling effects theory of the nondissipative diamagnetic currents is compared with the incommensurate charge-density-wave (ICDW) sliding theory. According to our quantitative calculated results, the phenomena described above can be understood if we consider that such an extraordinary increase in conductivity originates from the tunneling effects of the nondissipative localized diamagnetic currents between the two neighboring unit cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.