Abstract

As shown in earlier work [Ahlers, J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point, the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient beta(T). More precisely, it is the nonlinear T dependence of the density rho(T) in the buoyancy force that causes another type of NOB effect. We demonstrate this through a combination of experimental, numerical, and theoretical work, the last in the framework of the extended Prandtl-Blasius boundary-layer theory developed by Ahlers as cited above. The theory comes to its limits if the temperature dependence of the thermal expension coefficient beta(T) is significant. The measurements reported here cover the ranges 2.1<or similar to Pr<or similar to 3.9 and 5x10(9)<or similar to Ra<or similar to 2x10(12) and are for cylindrical samples of aspect ratios 1.0 and 0.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call