Abstract

AbstractFlow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient‐specific model of carotid artery with a saccular aneurysm under Newtonian and non‐Newtonian fluid assumptions. The model was obtained from three‐dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three‐dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non‐structured fine grid with 283 115 tetrahedral elements. The intra‐aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non‐Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non‐Newtonian blood models were similar. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call