Abstract

Micro(nano)plastics (MNPs) inevitably interact with coexisting contaminants and can act as vectors to affect their fate in organisms. However, the quantitative contribution of MNPs in the in vivo bioaccumulation and distribution of their coexisting contaminants remains unclear. Here, by selecting tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) as the typical coexisting contaminant, we quantified the contribution of MNPs to bioaccumulation and distribution of TDCIPP with toxicokinetic models. Results indicated that MNPs differentially facilitated TDCIPP bioaccumulation and distribution, and NPs slowed down TDCIPP depuration more significantly than MPs. Model analysis further revealed increasing contributions of MNPs to whole-fish TDCIPP bioaccumulation over time, with NPs (33–42%) contributing more than MPs (12–32%) at 48 h exposure. NPs contributed more than MPs to TDCIPP distribution in the liver (13–19% for MPs; 36–52% for NPs) and carcass (24–45% for MPs; 57–71% for NPs). The size-dependent vector effect might be attributed to the fact that MNPs promote contaminant transfer by damaging biofilm structure and increasing tissue membrane permeability, with NPs exerting stronger effects. This work demonstrated the effectiveness of using modeling tools to understand the relative importance of MNPs as contaminant vectors in the TK process and highlighted the higher contaminant transfer potential of NPs under combined exposure scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call