Abstract

Least squares fitting is in general not useful for high-dimensional linear models, in which the number of predictors is of the same or even larger order of magnitude than the number of samples. Theory developed in recent years has coined a paradigm according to which sparsity-promoting regularization is regarded as a necessity in such setting. Deviating from this paradigm, we show that non-negativity constraints on the regression coefficients may be similarly effective as explicit regularization if the design matrix has additional properties, which are met in several applications of non-negative least squares (NNLS). We show that for these designs, the performance of NNLS with regard to prediction and estimation is comparable to that of the lasso. We argue further that in specific cases, NNLS may have a better $\ell_{\infty}$-rate in estimation and hence also advantages with respect to support recovery when combined with thresholding. From a practical point of view, NNLS does not depend on a regularization parameter and is hence easier to use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.