Abstract
Objective. Overcomplete dictionaries are widely used in compressed sensing (CS) to improve the quality of signal reconstruction. However, dictionary learning under the -norm or -norm constraint inevitably produces dictionary atoms that are negatively correlated with the original signal; meanwhile, when we use a sparse linear combination of dictionary atoms to represent a signal, it is suboptimal for the dictionary atoms to “cancel each other out” by addition and subtraction to approximate the sample. In this paper, we propose a non-negative constrained dictionary learning (NCDL) algorithm to improve the reconstruction performance of CS with electrocardiogram (ECG) signals. Approach. Non-NCDL was divided into an encoding stage and a dictionary learning stage. In the encoding stage, non-negative constraints were imposed on the encoding coefficients and obtained the sparse solution using the alternating direction method of multipliers. At the same time, a penalty term was integrated into the objective function in order to remove small coding coefficients and achieve the effect of sparse coding. In the dictionary learning stage, the block coordinate descent algorithm was utilized to update the dictionary with a view to obtaining an overcomplete dictionary. Results. The performance of the proposed NCDL algorithm was evaluated using the standard MIT-BIH database. Quantitative performance metrics, such as percent root mean square difference (PRD1) and root mean square error, were compared with existing CS approaches to quantify the efficacy of the proposed scheme. For a PRD1 value of 9%, the compression ratio (CR) of the NCDL approach was around 2.78. When CR ranged from 1.05 to 2.78, the proposed NCDL approach outperformed the method of optimal direction, k-means singular value decomposition, and online dictionary learning approaches in ECG signal reconstruction based on CS. Significance. This promising preliminary result demonstrates the capability and feasibility of the proposed bioimpedance method and may open up a new direction for this application. The non-NCDL method proposed in this paper can be used to obtain a sparse basis and improve the performance of CS reconstruction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.