Abstract
The upstream autoregulatory mRNA leader sequence of gene 32 of 17 T-even and related bacteriophages folds into a simple tertiary structural motif, a hairpin-type RNA pseudoknot. In phage T4, the pseudoknot is contained within 28 contiguous nucleotides which adopt a pseudocontinuous helical structure derived from two coaxially stacked helical stems of four (stem 1) and seven (stem 2) base-pairs connected by two inequivalent single-stranded loops of five and one nucleotide(s). These two loops cross the minor and major grooves of stems 1 and 2, respectively. In this study, the equilibrium unfolding pathway of a 35-nucleotide RNA fragment corresponding to the wild-type and sequence variants of the T4 gene 32 mRNA has been determined through analysis of dual-wavelength, equilibrium thermal melting profiles via application of a van’t Hoff model based on multiple sequential, two-state transitions. The melting profile of the wild-type RNA is well-described by two sequential melting transitions over a wide range of magnesium concentration. Compensatory base-pair substitutions incorporated into helical stems 1 and 2 were used to assign the first low enthalpy, moderate t m melting transition to the denaturation of the short three to four base-pair stem 1, followed by unfolding of the larger seven base-pair stem 2. We find that loop 1 substitution mutants (A10 to G10, C10, U10 or GA10) strikingly uncouple the melting of stems 1 and 2, with the U10 substitution and the GA10 loop expansion more destabilizing than the G10 and C10 substitutions. A significant increase in the extent of cleavage by RNase T 1 following the conserved G26 (the 3′ nucleotide in loop 2) in the U10, G10, and GA10 mutants suggests that an altered helix-helix junction region in this mutant may be responsible, at least in part, for this uncoupling. In addition to a modest destabilization of stem 2, the major effect of deletion or nucleotide substitution in the 3′ single-stranded tail is a destabilization of stem 1, a non-nearest neighbor tertiary structural effect, which may well be transmitted through an altered loop 1-core helix interaction. In contrast, truncation of the 5′ tail has no effect on the stability of the molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.