Abstract

We investigated the derivation of non-natural peptide triazole dual receptor site antagonists of HIV-1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG-156 [R-I-N-N-I-X-W-S-E-A-M-M-CONH(2), in which X=ferrocenyltriazole-Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co-receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG-156, typified by UM-24 (Cit-N-N-I-X-W-S-CONH(2)) and containing the critical central stereospecific (L)X-(L)W cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM-24 to the greatest extent possible. The analogue with the critical "hot spot" residue Trp 6 replaced with L-3-benzothienylalanine (Bta) (KR-41), as well as a completely non-natural analogue containing D-amino acid substitutions outside the central cluster (KR-42, (D)Cit-(D)N-(D)N-(D)I-X-Bta-(D)S-CONH(2)), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV-1 Env gp120.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call