Abstract

Soluble misfolded Cu/Zn superoxide dismutase (SOD1) is implicated in motor neuron death in amyotrophic lateral sclerosis (ALS); however, the relative toxicities of the various non-native species formed by SOD1 as it misfolds and aggregates are unknown. Here, we demonstrate that early stages of SOD1 aggregation involve the formation of soluble oligomers that contain an epitope specific to disease-relevant misfolded SOD1; this epitope, recognized by the C4F6 antibody, has been proposed as a marker of toxic species. Formation of potentially toxic oligomers is likely to be exacerbated by an oxidizing cellular environment, as evidenced by increased oligomerization propensity and C4F6 reactivity when oxidative modification by glutathione is present at Cys-111. These findings suggest that soluble non-native SOD1 oligomers, rather than native-like dimers or monomers, share structural similarity to pathogenic misfolded species found in ALS patients and therefore represent potential cytotoxic agents and therapeutic targets in ALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.