Abstract

Organ transplant recipients have elevated cancer and viral infection risks due to immunosuppression and long-term results of organ transplantation remain unsatisfactory, mainly because of chronic rejection. The purpose of the current study is to establish a nonmyeloablative perioperative regimen, able to induce mixed chimerism and tolerance of allografts. To establish a nonmyeloablative perioperative regimen, we used Busulfan, an important component of many bone marrow transplantation preparative regimens for a variety of non-neoplastic diseases as an alternative to total body irradiation (TBI), and FTY720, a unique immunosuppression agent, inhibition lymphocyte homing. We found that creating a lymphohematopoietic chimera in which donor and recipient hematopoiesis coexist resulted in prolongation of the donor specific heart and skin allografts. Consistent with graft survival, pathological analysis indicated that the allografts from tolerant recipients were free of myocardial injury and had only a few interstitial infiltrates, and obliterative vasculopathy was not observed. Furthermore, we found that Treg cells were increased in the long-term graft acceptance recipients. Our data revealed that the therapeutic potential for using hematopoietic chimerism in non-myeloablated recipients hope the advances in rodent models described above in the development of minimal, nontoxic host conditioning regimens for mixed chimerism induction and subsequent acceptance of donor specific grafts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.