Abstract

Currently, the major measures of preventing and controlling microbial infection are vaccinations and drugs. However, the appearance of drug resistance microbial mounts is main obstacle in current anti-microbial therapy. One of the most ubiquitous actin-binding proteins, non-muscle myosin II (NM II) plays a crucial role in a wide range of cellular physiological activities in mammals, including cell adhesion, migration, and division. Nowadays, growing evidence indicates that aberrant expression or activity of NM II can be detected in many diseases caused by microbes, including viruses and bacteria. Furthermore, an important role for NM II in the infection of some microbes is verified. Importantly, modulating the expression of NM II with small hairpin RNA (shRNA) or the activity of it by inhibitors can affect microbial-triggered phenotypes. Therefore, NM II holds the promise to be a potential target for inhibiting the infection of microbes and even treating microbial-triggered discords. In spite of these, a comprehensive view on the functions of NM II in microbial infection and the regulators which have an impact on the roles of NM II in this context, is still lacking. In this review, we summarize our current knowledge on the roles of NM II in microbial-triggered discords and provide broad insights into its regulators. In addition, the existing challenge of investigating the multiple roles of NM II in microbial infection and developing NM II inhibitors for treating these microbial-triggered discords, are also discussed.

Highlights

  • Diseases caused by microbial infections including viruses and bacteria post a significant risk to public health, even resulting in social panic and huge economic loss duo to the outbreaks, such as Human immunodeficiency virus (HIV) and herpes simplex virus type 1 (HSV-1) (Looker et al, 2017; Bengtson et al, 2018)

  • Microbial infection is a complex process, which needs to utilize a series of receptors and co-factors on/in the cells for microbial entry, pathogens multiply inside and release their descendants outside the cell (Tomlin and Piccinini, 2018)

  • We have comprehensively summarized the essential roles of NM II in diverse microbial-triggered discords, which occur in human beings (Valiya Veettil et al., 2010; Hays et al., 2012; Sun et al., 2014), animals

Read more

Summary

Introduction

Diseases caused by microbial infections including viruses and bacteria post a significant risk to public health, even resulting in social panic and huge economic loss duo to the outbreaks, such as Human immunodeficiency virus (HIV) and herpes simplex virus type 1 (HSV-1) (Looker et al, 2017; Bengtson et al, 2018). Microbial infection is a complex process, which needs to utilize a series of receptors and co-factors on/in the cells for microbial entry, pathogens multiply inside and release their descendants outside the cell (Tomlin and Piccinini, 2018).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call