Abstract

30keV Ga(+) focused ion beam induced secondary electron (iSE) imaging was used to determine the relative contrast between several materials. The iSE signal compared from C, Si, Al, Ti, Cr, Ni, Cu, Mo, Ag, and W metal layers does not decrease with an increase in target atomic number Z(2), and shows a non-monotonic relationship between contrast and Z(2). The non-monotonic relationship is attributed to periodic fluctuations of the stopping power and sputter yield inherent to the ion-solid interactions. In addition, material contrast from electron-induced secondary electron (eSE) and backscattered electron (BSE) images using scanning electron microscopy (SEM) also shows non-monotonic contrast as a function of Z(2), following the periodic behavior of the stopping power for electron-solid interactions. A comparison of the iSE and eSE results shows similar relative contrast between the metal layers, and not complementary contrast as conventionally understood. These similarities in the contrast behavior can be attributed to similarities in the periodic and non-monotonic function defined by incident particle-solid interaction theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.