Abstract

Delamination frequently occurs in a laminated composite structure and can cause prominent local anomalies in curvature vibration shapes associated with vibration shapes of the composite structure. Spatially dense vibration shapes of a structure can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating surface of the structure. This paper introduces a continuous scanning scheme for general quadrangular scan areas assigned on plates and extends two damage identification methods for beams to identify delamination in laminated composite plates using a CSLDV system. One method is based on the technique that a curvature vibration shape from a polynomial that fits a vibration shape of a damaged structure can well approximate an associated curvature vibration shape of an undamaged structure and local anomalies caused by structural damage can be identified by comparing the curvature vibration shape of the damaged structure with that from the polynomial fit, and the other is based on the technique that a continuous wavelet transform can directly identify local anomalies in a curvature vibration shape caused by structural damage. The two methods yield corresponding damage indices and local anomalies in curvature vibration shapes can be identified in neighborhoods with high damage index values. Both numerical and experimental investigations on effectiveness of the two methods are conducted on a laminated composite plate with a delamination area. In the experimental investigation, delamination identification results from the two methods were compared with that from a C-scan image of the composite plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call