Abstract

Abstract The classical problem of the stability of Core-Annular Flow (CAF) in pipes is reconsidered from the point of view of the linear non-modal analysis. An accurate Chebyshev pseudospectral code in polar coordinates has been developed in order to separately discretize the two phases of the flow. Transient amplifications of the energy of three-dimensional perturbations are computed by taking into account the effects of viscosity and volume ratios between the two liquids, as well as of Reynolds number and a surface tension parameter. A detailed investigation is conducted in wide regions of the parameters space and the occurrence of remarkable transient growths is found for asymptotically both stable and unstable configurations. Optimal perturbations (i.e. giving the maximum energy amplification) are determined and their structure is analyzed. It is shown that in conditions in which axisymmetric modes are expected to constitute the most dangerous exponential disturbances, spiral perturbations can provide higher levels of transient energy amplification. Growth rates and amplification levels relative to modal and non-modal mechanisms are compared in order to analyze more in depth previous disagreements between experiments and modal theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.