Abstract

Metric anomalies arising from a distribution of point defects (intrinsic interstitials, vacancies, point stacking faults), thermal deformation, biological growth, etc. are well known sources of material inhomogeneity and internal stress. By emphasizing the geometric nature of such anomalies we seek their representations for materially uniform crystalline elastic solids. In particular, we introduce a quasi-plastic deformation framework where the multiplicative decomposition of the total deformation gradient into an elastic and a plastic deformation is established such that the plastic deformation is further decomposed multiplicatively in terms of a deformation due to dislocations and another due to metric anomalies. We discuss our work in the context of quasi-plastic strain formulation and Weyl geometry. We also derive a general form of metric anomalies which yield a zero stress field in the absence of other inhomogeneities and any external sources of stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.