Abstract

Advanced oxidation process (AOP) is a versatile photocatalytic approach to degrade various environmental pollutants. Among many photocatalysts used in AOP such as ZnO, TiO2, ZrO2, ZnS, CdS; TiO2 is the most widely adopted semiconductor material. TiO2 is a wide band gap material and absorb in UV spectrum which is a narrow region in the sun light. This benchmark makes it a less efficient photocatalyst under sunlight irradiation. To enhance the photocatalytic efficiency, the absorption band of photocatalyst should be modified in such a way that it leads to maximum absorption in the solar spectrum. The doping of nonmetals such as N, C, P and S etc. shift the band edge of the semiconductors towards the visible region and thus increases the photon absorption which successively enhances the photocatalytic efficiency. In this review, we have focused on effect of nonmetal doping on the properties and photocatalytic activity of the TiO2. Influence of various aspects such as synthesis procedure, doping source, concentration of dopant, calcination etc. are also explored towards alteration in properties and photocatalytic efficiency of nonmetals doped TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.