Abstract

We demonstrate the non-mechanical beam steering and amplifier operation of a vertical cavity surface emitting laser (VCSEL) integrated Bragg reflector waveguide amplifier with a cut-off wavelength detuning design, which enables unidirectional lateral coupling, continuous electrical beam steering, and diffraction-limited divergence angle. We present the modeling of the proposed structure for unidirectional coupling between a seed single-mode VCSEL and slow-light amplifier. We also present the detailed operating characteristics including the near-field and far-field patterns, light/current characteristics, and lasing spectrum. The experimental measurements exhibit a single-mode output of over 8 mW under CW operation, a continuous beam steering range of 16°, and beam divergence below 0.1° as an optical beam scanner. The integrated amplifier length is as small as 0.9 mm, and thus we could expect much higher powers and higher resolution points by increasing the amplifier lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call