Abstract

We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion describing a harmonic oscillator linearly coupled to a reservoir of harmonic oscillators. Employing the exact analytical solution of this model one can determine the size of memory effects for arbitrary couplings, temperatures, and frequency cutoffs. Here, quantum non-Markovianity is defined in terms of the flow of information between the open system and its environment, which is quantified through the Bures metric as distance measure for quantum states. This approach allows us to discuss quantum memory effects in the whole range from weak to strong dissipation for arbitrary Gaussian initial states. A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.