Abstract

Entropy production plays a fundamental role in nonequilibrium thermodynamics to quantify the irreversibility of open systems. Its positivity can be ensured for a wide class of setups, but the entropy production rate can become negative sometimes. This is often taken as an indicator of non-Markovianity. We make this link precise by showing under which conditions a negative entropy production rate implies non-Markovianity and when it does not. For a system coupled to a single heat bath, this can be established within a unified language for two setups: (i) the dynamics resulting from a coarse-grained description of a Markovian master equation and (ii) the classical Hamiltonian dynamics of a system coupled to a bath. The quantum version of the latter result is shown not to hold despite the fact that the integrated thermodynamic description is formally equivalent to the classical case. The instantaneous fixed point of a non-Markovian dynamics plays an important role in our study. Our key contribution is to provide a consistent theoretical framework to study the finite-time thermodynamics of a large class of dynamics with a precise link to its non-Markovianity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call