Abstract
We analyze non-Markovian evolution of open quantum systems. It is shown that any dynamical map representing the evolution of such a system may be described either by a nonlocal master equation with a memory kernel or equivalently by an equation which is local in time. These two descriptions are complementary: if one is simple, the other is quite involved, or even singular, and vice versa. The price one pays for the local approach is that the corresponding generator keeps the memory about the starting point "t{0}." This is the very essence of non-Markovianity. Interestingly, this generator might be highly singular; nevertheless, the corresponding dynamics is perfectly regular. Remarkably, the singularities of the generator may lead to interesting physical phenomena such as the revival of coherence or sudden death and revival of entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.