Abstract
Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well as the associated fluctuation-dissipation relation. Due to different nature of the particles, the path to equilibrium is slightly affected. However, in the weak coupling regime, the time-scale for approaching equilibrium is found to be globally unchanged. The Pauli-blocking effect can modify the usual picture in open quantum system. In some limits, contrary to boson, this effect can strongly hinder the influence of the bath by blocking the interacting channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.