Abstract

The dynamics of two non-coupled qubits independently interacting with their reservoirs is solved by the time convolutionless projection operator method. We study two-qubit quantum correlation dynamics for two different types of spectral densities, which are a Lorentzian distribution and an Ohmic spectral density with a Lorentzian—Drude cutoff function. For two qubits initially prepared in the initial Bell state, quantum discord can keep longer time and reach larger values in non-Markovian reservoirs for the first spectral distribution or by reducing the cutoff frequency for the second case. For the initial Bell-like state, the dynamic behaviors of quantum discord and entanglement are compared. The results show that a long time of quantum correlation can be obtained by adjusting some parameters in experiment and further confirm that the discord can capture quantum correlation in addition to entanglement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.