Abstract

We theoretically investigate the non-Markovian dynamical decoherence of a quantum system coupled to nonequilibrium environments with nonstationary statistical properties. We show the time evolution of the decoherence factor in real-imaginary space to study the environment-induced energy renormalization and backaction of coherence which are associated with the unitary and nonunitary parts of the quantum master equation, respectively. It is also shown that the nonequilibrium decoherence dynamics displays a transition between Markovian and non-Markovian and the transition boundary depends on the environmental parameters. The results are helpful for further understanding non-Markovian dynamics and coherence backaction on an open quantum system from environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.