Abstract
The environmental decoherence in multilevelled systems in the context of two-level approximation is examined. It is found that the environmental temperature plays a minor role in the magnitudes of the decoherence rates whereas, the system-environment coupling and the environmental energy spectrum are dominant. Particularly, the latter is important in zero temperature quantum fluctuations and/or the nonequilibrium noise sources due to the large range of energies present in the environmental modes. Decoherence is found to be dominated by the short time nonresonant processes and this observation severely questions the use of the two-levelled models on decoherence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.